详细介绍扫描电镜分辨率

        分辨率是扫描电镜最基本的性能判断指标,首先我们要弄清扫描电镜分辨率的一些细节问题。

 

180829_1-2

SS-150台式扫描电镜

 

        通常有关分辨率的问题,都会遵循瑞利判据。即一个光点按照衍射理论会是一个衍射斑,两个光点逐步靠近时,对应的衍射斑也从分离趋于重合。当两个衍射斑的半高宽重叠,则认为不可区分了。此时两个衍射斑之间的距离即为分辨率。

 

        但一般单帧图像的仪器才完全符合此规律,比如TEM、光学显微镜等。扫描电镜的分辨率以瑞利判据为基础,但也却略有不同。扫描电镜是属于电子束移动型的,并不完全适用半高宽重合的概念。

 

        扫描电镜的分辨率分为理论分辨率、验收分辨率,和一般测试过程中能达到的分辨率。

 


        1. 理论分辨率

 

        扫描电镜的理论分辨率只能用电子束束斑所能达到的最小尺寸来进行描述,其达到样品上的束斑的直径理论上为:

 

b9827a5e-d07e-4392-b391-100466e5b298

37b6e031-5c12-4b62-a75d-6df24182153e

 

        其中,d为理想状况下电子源汇聚点经过电磁透镜成像后的束斑大小、CS为电镜的球差系数、CC为色差系数、ΔV为灯丝单色性、V为加速电压、I0为束流、B为灯丝亮度、α为电子束汇聚的张角,λ为电子波长(远小于其它项)。

 

        束斑直径D越小,电镜分辨率越高。我们详细分解一下上述公式:

 

        ① 高斯束斑dk项:


        在不考虑任何非理想因素时,将电子镜筒完全看成是光学成像。电子源发出的电子在经过透镜、光阑、物镜后,束斑变小,这和光学仪器中的逐次成像基本一致,如图。

 

96234401-7e1e-4227-be63-c6d8f20668fc

电子束的逐次汇聚成像

根据图中,我们可以得到到达样品上的束流I0为

6a3a219e-0b3a-4d3e-a1ed-1d9cfa82ebf7

        其中,αa越小,αj越大,束流越小。αa对应的光阑大小,αj对应聚光镜的励磁。再根据透镜逐次成像公式,我们得到束斑直径d为

3092e3da-4576-48c2-acf8-3bee3b2828cb

        或者根据亥姆赫兹-拉格朗日定则同样得到束斑直径d为

37b6e031-5c12-4b62-a75d-6df24182153e

 
        由公式我们便可得知不同的电子源d0相差很大,所以对d乃至最后实际电子束的直径有很大影响。其次,工作距离越近S越小,汇聚角α越大,聚光镜励磁越强αj越大,光阑孔径越小αa越小,均是有利于减小最后的束斑尺寸。

 

        从这一点我们也能得出一个简单的结论,在实际操作过程中工作距离越小、光阑孔径越小、束流越小,分辨率越高。

 

        ②  有关球差项:


        球差CS由电镜设计所决定,无法通过电镜操作进行改变。不过半磁浸没式透镜比无磁场物镜有更低的球差系数,这也可以说明具有多模式的电镜在进入磁浸没模式后,分辨率会大幅度提高。

 

        ③  有关色差项:


        色差CC由电子源的类型所决定,也非通过改变电镜工作条件就可控制。不过相对来说高电压下色差是影响更小,所以这也是为什么所有的电镜都是在高电压下有着比低电压更好分辨率的重要原因。

 

        ④  Boersch效应:


        虽然电子束与光束的汇聚成像极其类似,但是两者有一个重大的不同点,那就是光线在传播中对其它光线不会有任何影响,而电子束中的电子间却存在相互排斥的库仑力,如图。

 

1e671daa-5584-45f7-b963-125846232fca

        A为理想状态下电子传播的过程,但是由于存在库仑力的作用,会导致电子在传播过程中后面的推前面的电子,在这一过程中导致电子能量发生震荡,如B;不仅在传播方向,由于电子束总有一定的截面积,在同一个波面中的电子也会相互排斥,如C;

 

3D之家        所以早在1954年,Boersch就随着电子束束流的增加会导致电子能量分布展宽,大大超过阴极温度对应的麦克斯韦分布的能量宽度,从而使得束斑尺寸大幅度增加,这就是著名的Boersch效应。

 

        根据束斑公式,我们先做一个简单的结论。将所有参数分成两个部分,一部分由电镜设计所决定,操作人员改变不了的因素:如球差、灯丝色差、亮度等。另一部分,操作者可以通过改变电镜工作条件进行控制来减小束斑尺寸、提高分辨率:提高加速电压、减小束流束斑、减小工作距离、减小光阑孔径。

 


        §2. 验收分辨率

 

        以上介绍的都是理论上的分辨率,但是电镜的分辨能力最终要通过实验进行检验,于是任何电镜都有一个指标分辨率来表明电镜的性能水平,而所谓的验收分辨率一般都要不差于指标分辨率。

 

        不过电镜验收和平时实验观察不同,拍摄验收指标需要在比较苛刻的条件下进行。不仅要有达标的环境条件,不能有电磁场、振动干扰,也必须是特定的碳衬底金颗粒样品。

 

        不过目前有关电镜的验收分辨率还没有标准的测试方法,不过通常采用的有三种方法:间隙测量法、有效放大率法和对比度法。

 

        ①   间隙测量法
        间隙测量法早期使用很多,甚至现在有很多电镜验收依然采用此种方法。此种方法是拍摄金颗粒标样,然后寻找金颗粒之间的间隙进行测量,将能量到的最小间隙作为分辨率。

 

3D之家        不过此种方法有着很大的局限性,随着电镜分辨率越来越高,金颗粒之间的间隙可能要比分辨率大很多,很难找到适合测试分辨率的位置。另外,当放大倍数很大时,测量往往会有较大的不确定性。量尺寸即使误差一个像素,也误差了接近零点几纳米,而现在场发射电镜的分辨率都在1.0nm左右,这样的误差是不可接受的。

 

        ②  有效放大率法


        为了解决第一种方法的不足,往往会采用有效放大率法。人眼在明视距离(约25 cm)下的分辨率为0.3 mm,再小人眼则不能分辨。用0.3毫米除以电镜的分辨率即为有效放大率。如电镜分辨率为1.5 nm,其有效放大率就是20万倍。当放大倍数超过有效放大率后,图像虽然视场在缩小,感觉在放大,但是不会出现更多的细节。

 

        采用此种方法进行分辨率测试时,拍摄有效放大率(或者略大倍数)下的金颗粒照片,如果图像清晰,金颗粒边缘锐利可辨,则视为能达到分辨率。

 

        ③  边缘对比度法


3D之家         在光学仪器的分辨率中往往用调制传递函数(MTF)进行分辨率的测试。MTF是通过测试一系列宽度不同的黑白线对,通过光学成像后的线对的反差情况来判断光学仪器的性能。将黑色线条认为是零亮度,白色线条是100%亮度。理论上来说黑白线对之间的边缘应该很锐利没有过渡。

 

        但是随着线对的宽度越来越窄,经过成像后,白线区域的亮度有所减少,黑色区域的亮度有所增加,也就是说成像中的黑白线对都随着宽度的减小越来越向中间灰色靠拢。直至最后线对极其致密时,黑白线的亮度一样,线对完全不可区分。

 

        那么线对密度与对应的反差之间就有一条递减的曲线,此曲线就是MTF曲线,如图5-10。它反应了光学仪器的分辨率和反差性能。此外,黑白线对之间过渡区域也随线对的变窄而越来越宽。

 

        在电镜中也同样如此,金颗粒与碳基底的边缘交界处也可看成是一个黑白线对,这个线对的亮度也有一个高斯函数(衍射波理论的要求)的过渡,类似MTF曲线。通常将某两个反差之间对应的距离就作为电镜的分辨率。

 

 

3D之家    行业动态    详细介绍扫描电镜分辨率
创建时间:2019-10-18 16:18
浏览量:0

善时仪器

手  机: 18589082047

电     话 :  0755-23347785

传  真: 0755-27205042

邮    箱: sales@sense。cc

地  址: 深圳市宝安区新桥街道沙企社区中心路18号高盛大厦12楼

安徽快3 安徽快3 三地彩票官网 上海11选5官网 上海11选5走势图 上海11选5 安徽快3 安徽快3走势图 安徽快3 上海11选5